STAT subtype specificity and ischemic preconditioning in mice: is STAT-3 enough?
نویسندگان
چکیده
The role of other STAT subtypes in conferring ischemic tolerance is unclear. We hypothesized that in STAT-3 deletion alternative STAT subtypes would protect myocardial function against ischemia-reperfusion injury. Wild-type (WT) male C57BL/6 mice or mice with cardiomyocyte STAT-3 knockout (KO) underwent baseline echocardiography. Langendorff-perfused hearts underwent ischemic preconditioning (IPC) or no IPC before ischemia-reperfusion. Following ex vivo perfusion, hearts were analyzed for STAT-5 and -6 phosphorylation by Western blot analysis of nuclear fractions. Echocardiography and postequilibration cardiac performance revealed no differences in cardiac function between WT and KO hearts. Phosphorylated STAT-5 and -6 expression was similar in WT and KO hearts before perfusion. Contractile function in WT and KO hearts was significantly impaired following ischemia-reperfusion in the absence of IPC. In WT hearts, IPC significantly improved the recovery of the maximum first derivative of developed pressure (+dP/dtmax) compared with that in hearts without IPC. IPC more effectively improved end-reperfusion dP/dtmax in WT hearts compared with KO hearts. Preconditioned and nonpreconditioned KO hearts exhibited increased phosphorylated STAT-5 and -6 expression compared with WT hearts. The increased subtype activation did not improve the efficacy of IPC in KO hearts. In conclusion, baseline cardiac performance is preserved in hearts with cardiac-restricted STAT-3 deletion. STAT-3 deletion attenuates preconditioning and is not associated with a compensatory upregulation of STAT-5 and -6 subtypes. The activation of STAT-5 and -6 in KO hearts following ischemic challenge does not provide functional compensation for the loss of STAT-3. JAK-STAT signaling via STAT-3 is essential for effective IPC.
منابع مشابه
Genetic depletion of cardiac myocyte STAT-3 abolishes classical preconditioning.
OBJECTIVE To evaluate the functional requirement of signal transducer and activator of transcription-3 (STAT-3) in cardiac myocyte tolerance to ischemia (I) and in classical preconditioning. METHODS Cardiac myocyte STAT-3 was depleted in mice using Cre-lox p technology. Isolated cardiomyocytes from wild-type (WT) and STAT-3-deficient mice were evaluated for viability following simulated ische...
متن کاملDual activation of STAT-3 and Akt is required during the trigger phase of ischaemic preconditioning.
AIMS During preconditioning by tumour necrosis factor-alpha (TNFalpha), activation of the signal transducer and activator of transcription-3 (STAT-3) but not Akt, is essential, whereas ischaemic cardiac preconditioning (IPC) requires both STAT-3 and Akt at the time of reperfusion. However, it is not known whether the same signalling pattern occurs during the preconditioning stimulus (trigger ph...
متن کاملSynergistic Effect of Endurance Training Combined with Curcumin on Intratumoral Expression of Interleukin-4 (Il4) and Stat-6 in Female Mice with Breast Cancer
Introduction: The Il4/Stat-6 signaling axis is one of the most important pathways involved in the growth and development of breast cancer. Hence, the aim of the present study was to investigate the synergistic effect of endurance training along with curcumin on the intratumoral expression of Il4 and Stat-6 in female BALB/c mice with breast cancer. Methods: Forty BALB/c mice (4-5 weeks old) were...
متن کاملSTAT transcription in the ischemic heart
All seven STAT proteins are expressed in the heart, and in this review we will focus on their contribution to cardiac physiology and to ischemic heart disease and its consequences. A substantial literature has focused on the roles of STAT1 and STAT3 in ischemic heart disease, where, at least in the acute phase, they appear to have a yin-yang relationship. STAT1 contributes to the loss of irrepl...
متن کاملSTAT signaling in ischemic heart: a role of STAT5A in ischemic preconditioning.
We recently demonstrated that ischemic preconditioning (PC) induced by cyclic episodes of short duration of ischemia and reperfusion potentiates a signal transduction cascade involving Janus kinase (JAK) 2 and signal transducer and activator of transcription 3 (STAT3). A rapid activation of JAK and several STATs, including STAT3, STAT5A, and STAT6 also occurred during myocardial ischemia and re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 300 2 شماره
صفحات -
تاریخ انتشار 2011